3.18.25 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{5/2}} \, dx\)

Optimal. Leaf size=181 \[ \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{e^{5/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {664, 660, 205} \begin {gather*} \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{e^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2),x]

[Out]

(2*(a - (c*d^2)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/Sqrt[d + e*x] + (2*(a*d*e + (c*d^2 + a*e^2)*
x + c*d*e*x^2)^(3/2))/(3*e*(d + e*x)^(3/2)) + (2*(c*d^2 - a*e^2)^(3/2)*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/e^(5/2)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 660

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(p*(2*c*d - b*e))/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx &=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}-\frac {\left (2 c d^2 e-e \left (c d^2+a e^2\right )\right ) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx}{e^2}\\ &=\frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{e^2}\\ &=\frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {\left (2 \left (c d^2-a e^2\right )^2\right ) \operatorname {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{e}\\ &=\frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {2 \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 137, normalized size = 0.76 \begin {gather*} \frac {2 \sqrt {d+e x} \sqrt {a e+c d x} \left (3 \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )+\sqrt {e} \sqrt {a e+c d x} \left (4 a e^2+c d (e x-3 d)\right )\right )}{3 e^{5/2} \sqrt {(d+e x) (a e+c d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2),x]

[Out]

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[e]*Sqrt[a*e + c*d*x]*(4*a*e^2 + c*d*(-3*d + e*x)) + 3*(c*d^2 - a*e^2)
^(3/2)*ArcTan[(Sqrt[e]*Sqrt[a*e + c*d*x])/Sqrt[c*d^2 - a*e^2]]))/(3*e^(5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 2.15, size = 157, normalized size = 0.87 \begin {gather*} \frac {((d+e x) (a e+c d x))^{3/2} \left (\frac {2 \left (-3 c d^2 \sqrt {a e+c d x}+3 a e^2 \sqrt {a e+c d x}+e (a e+c d x)^{3/2}\right )}{3 e^2}+\frac {2 \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )}{e^{5/2}}\right )}{(d+e x)^{3/2} (a e+c d x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2),x]

[Out]

(((a*e + c*d*x)*(d + e*x))^(3/2)*((2*(-3*c*d^2*Sqrt[a*e + c*d*x] + 3*a*e^2*Sqrt[a*e + c*d*x] + e*(a*e + c*d*x)
^(3/2)))/(3*e^2) + (2*(c*d^2 - a*e^2)^(3/2)*ArcTan[(Sqrt[e]*Sqrt[a*e + c*d*x])/Sqrt[c*d^2 - a*e^2]])/e^(5/2)))
/((a*e + c*d*x)^(3/2)*(d + e*x)^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 399, normalized size = 2.20 \begin {gather*} \left [\frac {3 \, {\left (c d^{3} - a d e^{2} + {\left (c d^{2} e - a e^{3}\right )} x\right )} \sqrt {-\frac {c d^{2} - a e^{2}}{e}} \log \left (-\frac {c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} e \sqrt {-\frac {c d^{2} - a e^{2}}{e}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d e x - 3 \, c d^{2} + 4 \, a e^{2}\right )} \sqrt {e x + d}}{3 \, {\left (e^{3} x + d e^{2}\right )}}, -\frac {2 \, {\left (3 \, {\left (c d^{3} - a d e^{2} + {\left (c d^{2} e - a e^{3}\right )} x\right )} \sqrt {\frac {c d^{2} - a e^{2}}{e}} \arctan \left (\frac {\sqrt {e x + d} \sqrt {\frac {c d^{2} - a e^{2}}{e}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}\right ) - \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d e x - 3 \, c d^{2} + 4 \, a e^{2}\right )} \sqrt {e x + d}\right )}}{3 \, {\left (e^{3} x + d e^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

[1/3*(3*(c*d^3 - a*d*e^2 + (c*d^2*e - a*e^3)*x)*sqrt(-(c*d^2 - a*e^2)/e)*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d^3
 + 2*a*d*e^2 + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*e*sqrt(-(c*d^2 - a*e^2)/e))/(e^2*x^
2 + 2*d*e*x + d^2)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*e*x - 3*c*d^2 + 4*a*e^2)*sqrt(e*x + d
))/(e^3*x + d*e^2), -2/3*(3*(c*d^3 - a*d*e^2 + (c*d^2*e - a*e^3)*x)*sqrt((c*d^2 - a*e^2)/e)*arctan(sqrt(e*x +
d)*sqrt((c*d^2 - a*e^2)/e)/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)) - sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*
e^2)*x)*(c*d*e*x - 3*c*d^2 + 4*a*e^2)*sqrt(e*x + d))/(e^3*x + d*e^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:inde
x.cc index_m operator + Error: Bad Argument Valueindex.cc index_m operator + Error: Bad Argument Valueindex.cc
 index_m operator + Error: Bad Argument ValueEvaluation time: 1.57Done

________________________________________________________________________________________

maple [A]  time = 0.06, size = 275, normalized size = 1.52 \begin {gather*} -\frac {2 \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, \left (3 a^{2} e^{4} \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )-6 a c \,d^{2} e^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )+3 c^{2} d^{4} \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )-\sqrt {c d x +a e}\, \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, c d e x -4 \sqrt {c d x +a e}\, \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, a \,e^{2}+3 \sqrt {c d x +a e}\, \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, c \,d^{2}\right )}{3 \sqrt {e x +d}\, \sqrt {c d x +a e}\, \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)/(e*x+d)^(5/2),x)

[Out]

-2/3*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(3*arctanh((c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*e)*a^2*e^4-6
*arctanh((c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*e)*a*c*d^2*e^2+3*arctanh((c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e
)^(1/2)*e)*c^2*d^4-(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)*c*d*e*x-4*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/
2)*a*e^2+3*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)*c*d^2)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/e^2/((a*e^2-c*d^2)
*e)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {5}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/(e*x + d)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (d+e\,x\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{\left (d + e x\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(5/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(d + e*x)**(5/2), x)

________________________________________________________________________________________